KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation.

TitleKMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation.
Publication TypeJournal Article
Year of Publication2016
AuthorsAng S-Y, Uebersohn A, Spencer IC, Huang Y, Lee J-E, Ge K, Bruneau BG
JournalDevelopment
Volume143
Issue5
Pagination810-21
Date Published2016 Mar 1
ISSN1477-9129
Abstract

KMT2D, which encodes a histone H3K4 methyltransferase, has been implicated in human congenital heart disease in the context of Kabuki syndrome. However, its role in heart development is not understood. Here, we demonstrate a requirement for KMT2D in cardiac precursors and cardiomyocytes during cardiogenesis in mice. Gene expression analysis revealed downregulation of ion transport and cell cycle genes, leading to altered calcium handling and cell cycle defects. We further determined that myocardial Kmt2d deletion led to decreased H3K4me1 and H3K4me2 at enhancers and promoters. Finally, we identified KMT2D-bound regions in cardiomyocytes, of which a subset was associated with decreased gene expression and decreased H3K4me2 in mutant hearts. This subset included genes related to ion transport, hypoxia-reoxygenation and cell cycle regulation, suggesting that KMT2D is important for these processes. Our findings indicate that KMT2D is essential for regulating cardiac gene expression during heart development primarily via H3K4 di-methylation.

DOI10.1242/dev.132688
Alternate JournalDevelopment
Citation Key1666
PubMed ID26932671